
Published as a conference paper at ICLR 2019

TRAINING FOR FASTER ADVERSARIAL ROBUSTNESS

VERIFICATION VIA INDUCING RELU STABILITY

Kai Y. Xiao Vincent Tjeng Nur Muhammad (Mahi) Sha�ullah Aleksander M �adry
Massachusetts Institute of Technology
Cambridge, MA 02139
{kaix, vtjeng, nshafiul, madry}@mit.edu

ABSTRACT

We explore the concept of co-design in the context of neural network veri�cation.
Speci�cally, we aim to train deep neural networks that not only are robust to ad-
versarial perturbations but also whose robustness can be veri�ed more easily. To
this end, we identify two properties of network models – weight sparsity and so-
called ReLU stability – that turn out to signi�cantly impact the complexity of the
corresponding veri�cation task. We demonstrate that improving weight sparsity
alone already enables us to turn computationally intractable veri�cation problems
into tractable ones. Then, improving ReLU stability leads to an additional 4–13x
speedup in veri�cation times. An important feature of our methodology is its “uni-
versality,” in the sense that it can be used with a broad range of training procedures
and veri�cation approaches.

1 INTRODUCTION

Deep neural networks (DNNs) have recently achieved widespread success in image classi�cation
(Krizhevsky et al., 2012), face and speech recognition (Taigman et al., 2014; Hinton et al., 2012),
and game playing (Silver et al., 2016; 2017). This success motivates their application in a broader
set of domains, including more safety-critical environments. This thrust makes understanding the
reliability and robustness of the underlying models, let alone their resilience to manipulation by
malicious actors, a central question. However, predictions made by machine learning models are
often brittle. A prominent example is the existence of adversarial examples (Szegedy et al., 2014):
imperceptibly modi�ed inputs that cause state-of-the-art models to misclassify with high con�dence.

There has been a long line of work on both generating adversarial examples, calledattacks(Carlini
and Wagner, 2017a;b; Athalye et al., 2018a;b; Uesato et al., 2018; Evtimov et al., 2017), and training
models robust to adversarial examples, calleddefenses(Goodfellow et al., 2015; Papernot et al.,
2016; Madry et al., 2018; Kannan et al., 2018). However, recent research has shown that most
defenses are ineffective (Carlini and Wagner, 2017a; Athalye et al., 2018a; Uesato et al., 2018).
Furthermore, even for defenses such as that of Madry et al. (2018) that have seen empirical success
against many attacks, we are unable to conclude yet with certainty that they are robust to all attacks
that we want these models to be resilient to.

This state of affairs gives rise to the need forveri�cation of networks, i.e., the task offormally
proving that no small perturbations of a given input can cause it to be misclassi�ed by the network
model. Although many exact veri�ers1 have been designed to solve this problem, the veri�cation
process is often intractably slow. For example, when using the Reluplex veri�er of Katz et al. (2017),
even verifying a small MNIST network turns out to be computationally infeasible. Thus, addressing
this intractability of exact veri�cation is the primary goal of this work.

Our Contributions
Our starting point is the observation that, typically, model training and veri�cation are decoupled
and seen as two distinct steps. Even though this separation is natural, it misses a key opportunity:
the ability to align these two stages. Speci�cally, applying the principle ofco-designduring model

1Also sometimes referred to as combinatorial veri�ers.

1

Published as a conference paper at ICLR 2019

training is possible: training models in a way to encourage them to be simultaneously robust and
easy-to-exactly-verify. This insight is the cornerstone of the techniques we develop in this paper.

In this work, we use the principle of co-design to develop training techniques that give models
that are both robust and easy-to-verify. Our techniques rely on improving two key properties of
networks: weight sparsity and ReLU stability. Speci�cally, we �rst show that natural methods for
improving weight sparsity during training, such as`1-regularization, give models that can already be
veri�ed much faster than current methods. This speedup happens because in general, exact veri�ers
bene�t from having fewer variables in their formulations of the veri�cation task. For instance, for
exact veri�ers that rely on linear programming (LP) solvers, sparser weight matrices means fewer
variables in those constraints.

We then focus on the major speed bottleneck of current approaches to exact veri�cation of ReLU
networks: the need of exact veri�cation methods to “branch,” i.e., consider two possible cases for
each ReLU (ReLU being active or inactive). Branching drastically increases the complexity of
veri�cation. Thus, well-optimized veri�ers will not need to branch on a ReLU if it can determine
that the ReLU isstable, i.e. that the ReLU will always be active or always be inactive for any
perturbation of an input. This motivates the key goal of the techniques presented in this paper: we
aim to minimize branching by maximizing the number of stable ReLUs. We call this goalReLU
stabilityand introduce a regularization technique to induce it.

Our techniques enable us to train weight-sparse and ReLU stable networks for MNIST and CIFAR-
10 that can be veri�ed signi�cantly faster. Speci�cally, by combining natural methods for inducing
weight sparsity with a robust adversarial training procedure (cf. Goodfellow et al. (2015)), we are
able to train networks for which almost90% of inputs can be veri�ed in an amount of time that
is small2 compared to previous veri�cation techniques. Then, by also adding our regularization
technique for inducing ReLU stability, we are able to train models that can be veri�ed an addi-
tional 4–13x times as fast while maintaining state-of-the-art accuracy on MNIST. Our techniques
show similar improvements for exact veri�cation of CIFAR models. In particular, we achieve the
following veri�cation speed and provable robustness results for`1 norm-bound adversaries:

Dataset Epsilon Provable Adversarial Accuracy Average Solve Time (s)

MNIST
� = 0 :1 94.33% 0.49
� = 0 :2 89.79% 1.13
� = 0 :3 80.68% 2.78

CIFAR
� = 2=255 45.93% 13.50
� = 8=255 20.27% 22.33

Our network for� = 0 :1 on MNIST achieves provable adversarial accuracies comparable with the
current best results of Wong et al. (2018) and Dvijotham et al. (2018), and our results for� = 0 :2 and
� = 0 :3 achieve the best provable adversarial accuracies yet. To the best of our knowledge, we also
achieve the �rst nontrivial provable adversarial accuracy results using exact veri�ers for CIFAR-10.

Finally, we design our training techniques with universality as a goal. We focus on improving the
input to the veri�cation process, regardless of the veri�er we end up using. This is particularly
important because research into network veri�cation methods is still in its early stages, and our co-
design methods are compatible with the best current veri�ers (LP/MILP-based methods) and should
be compatible with any future improvements in veri�cation.

Our code is available athttps://github.com/MadryLab/relu_stable .

2 BACKGROUND AND RELATED WORK

Exact veri�cation of networks has been the subject of many recent works (Katz et al., 2017; Ehlers,
2017; Carlini et al., 2017; Tjeng et al., 2017; Lomuscio and Maganti, 2017; Cheng et al., 2017a). To
understand the context of these works, observe that for linear networks, the task of exact veri�cation
is relatively simple and can be done by solving a LP. For more complex models, the presence of
nonlinear ReLUs makes veri�cation over all perturbations of an input much more challenging. This

2We chose our time budget for veri�cation to be 120 seconds per input image.

2

Published as a conference paper at ICLR 2019

is so as ReLUs can be active or inactive depending on the input, which can cause exact veri�ers
to “branch" and consider these two cases separately. The number of such cases that veri�ers have
to consider might grow exponentially with the number of ReLUs, so veri�cation speed will also
grow exponentially in the worst case. Katz et al. (2017) further illustrated the dif�culty of exact
veri�cation by proving that it is NP-complete. In recent years, formal veri�cation methods were
developed to verify networks. Most of these methods use satis�ability modulo theory (SMT) solvers
(Katz et al., 2017; Ehlers, 2017; Carlini et al., 2017) or LP and Mixed-Integer Linear Programming
(MILP) solvers (Tjeng et al., 2017; Lomuscio and Maganti, 2017; Cheng et al., 2017a). However,
all of them are limited by the same issue of scaling poorly with the number of ReLUs in a network,
making them prohibitively slow in practice for even medium-sized models.

One recent approach for dealing with the inef�ciency of exact veri�ers is to focus on certi�cation
methods3 (Wong and Kolter, 2018; Wong et al., 2018; Dvijotham et al., 2018; Raghunathan et al.,
2018; Mirman et al., 2018; Sinha et al., 2018). In contrast to exact veri�cation, these methods do not
solve the veri�cation task directly; instead, they rely on solving arelaxationof the veri�cation prob-
lem. This relaxation is usually derived by overapproximating the adversarial polytope, or the space
of outputs of a network for a region of possible inputs. These approaches rely on training models in
a speci�c manner that makes certi�cation of those models easier. As a result, they can often obtain
provable adversarial accuracy results faster. However, certi�cation is fundamentally different from
veri�cation in two primary ways. First, it solves a relaxation of the original veri�cation problem. As
a result, certi�cation methods can fail to certify many inputs that are actually robust to perturbations
– only exact veri�ers, given enough time, can give conclusive answers on robustness for every single
input. Second, certi�cation approaches fall under the paradigm of co-training, where a certi�cation
method only works well on models speci�cally trained for that certi�cation step. When used as a
black box on arbitrary models, the certi�cation step can yield a high rate of false negatives. For
example, Raghunathan et al. (2018) found that their certi�cation step was signi�cantly less effective
when used on a model trained using Wong and Kolter (2018)'s training method, and vice versa. In
contrast, we design our methods to be universal. They can be combined with any standard train-
ing procedure for networks and will improve exact veri�cation speed for any LP/MILP-based exact
veri�er. Our methods can also decrease the amount of overapproximation incurred by certi�cation
methods like Wong and Kolter (2018); Dvijotham et al. (2018). Similar to most of the certi�cation
methods, our technique can be made to have very little training time overhead.

Finally, subsequent work of Gowal et al. (2018) shows how applying interval bound propagation
during training, combined with MILP-based exact veri�cation, can lead to provably robust networks.

3 TRAINING VERIFIABLE NETWORK MODELS

We begin by discussing the task of verifying a network and identify two key properties of networks
that lead to improved veri�cation speed: weight sparsity and so-called ReLU stability. We then use
natural regularization methods for inducing weight sparsity as well as a new regularization method
for inducing ReLU stability. Finally, we demonstrate that these methods signi�cantly speed up
veri�cation while maintaining state-of-the-art accuracy.

3.1 VERIFYING ADVERSARIAL ROBUSTNESS OFNETWORK MODELS

Deep neural network models. Our focus will be on one of the most common architectures for
state-of-the-art models:k-layer fully-connected feed-forward DNN classi�ers with ReLU non-
linearities4. Such models can be viewed as a functionf (�; W; b), whereW and b represent the
weight matrices and biases of each layer. For an inputx, the outputf (x; W; b) of the DNN is

3These works use both “veri�cation” and “certi�cation” to describe their methods. For clarity, we use “cer-
ti�cation” to describe their approaches, while we use “veri�cation” to describeexactveri�cation approaches.
For a more detailed discussion of the differences, see Appendix F.

4Note that this encompasses common convolutional network architectures because every convolutional layer
can be replaced by an equivalent fully-connected layer.

3

Published as a conference paper at ICLR 2019

de�ned as:

z0 = x (1)
ẑi = zi � 1Wi + bi for i = 1 ; 2; : : : ; k � 1 (2)
zi = max(ẑi ; 0) for i = 1 ; 2; : : : ; k � 2 (3)

f (x; W; b) = ẑk � 1 (4)

Here, for each layeri , we letẑij denote thej th ReLU pre-activation and let̂zij (x) denote the value
of ẑij on an inputx. ẑk � 1 is the �nal, output layer with an output unit for each possible label (the
logits). The network will make predictions by selecting the label with the largest logit.

Adversarial robustness. For a network to be reliable, it should make predictions that are robust
– that is, it should predict the same output for inputs that are very similar. Speci�cally, we want
the DNN classi�er's predictions to be robust to a set Adv(x) of possible adversarial perturbations
of an inputx. We focus oǹ 1 norm-bound adversarial perturbations, where Adv(x) = f x0 :
jj x0 � xjj1 � � g for some constant� , since it is the most common one considered in adversarial
robustness and veri�cation literature (thus, it currently constitutes a canonical benchmark). Even so,
our methods can be applied to other`p norms and broader sets of perturbations.

Veri�cation of network models. For an inputx with correct labely, a perturbed inputx0 can cause
a misclassi�cation if it makes the logit of some incorrect labelŷ larger than the logit ofy onx0. We
can thus express the task of �nding an adversarial perturbation as the optimization problem:

min
x 0;ŷ

f (x0; W)y � f (x0; W) ŷ

subject to x0 2 Adv(x)

An adversarial perturbation exists if and only if the objective of the optimization problem is negative.

Adversarial accuracies.We de�ne thetrue adversarial accuracyof a model to be the fraction of
test set inputs for which the model is robust to all allowed perturbations. By de�nition, evaluations
against speci�c adversarial attacks like PGD or FGSM provide an upper bound to this accuracy,
while certi�cation methods provide lower bounds. Given suf�cient time for each input, an exact
veri�er can prove robustness to perturbations, or �nd a perturbation where the network makes a
misclassi�cation on the input, and thus exactly determine the true adversarial accuracy. This is in
contrast to certi�cation methods, which solve a relaxation of the veri�cation problem and can not
exactly determine the true adversarial accuracy no matter how much time they have.

However, such exact veri�cation may take impractically long for certain inputs, so we instead com-
pute theprovable adversarial accuracy, which we de�ne as the fraction of test set inputs for which
the veri�er can prove robustness to perturbations within an allocated time budget (timeout). Simi-
larly to certi�able accuracy, this accuracy constitutes a lower bound on the true adversarial accuracy.
A model can thus, e.g., have high true adversarial accuracy and low provable adversarial accuracy if
veri�cation of the model is too slow and often fails to complete before timeout.

Also, in our evaluations, we chose to use the MILP exact veri�er of Tjeng et al. (2017) when per-
forming experiments, as it is both open source and the fastest veri�er we are aware of.

3.2 WEIGHT SPARSITY AND ITS IMPACT ON VERIFICATION SPEED

The �rst property of network models that we want to improve in order to speed up exact veri�cation
of those models is weight sparsity. Weight sparsity is important for veri�cation speed because many
exact veri�ers rely on solving LP or MILP systems, which bene�t from having fewer variables.
We use two natural regularization methods for improving weight sparsity:`1-regularization and
small weight pruning. These techniques signi�cantly improve veri�cation speed – see Table 1.
Verifying even small MNIST networks is almost completely intractable without them. Speci�cally,
the veri�er can only prove robustness of an adversarially-trained model on19%of inputs with a one
hour budget per input, while the veri�er can prove robustness of an adversarially-trained model with
`1-regularization and small weight pruning on89:13%of inputs with a 120 second budget per input.

Interestingly, even though adversarial training improves weight sparsity (see Appendix B) it was
still necessary to usè1-regularization and small weight pruning. These techniques further promoted
weight sparsity and gave rise to networks that were much easier to verify.

4

Published as a conference paper at ICLR 2019

Dataset Epsilon Training Test Set Provable Adversarial Average
Method Accuracy Accuracy Solve Time (s)

MNIST � = 0 :1

1 Adversarial Training 99.17% 19.00% 2970.43
2 +`1-Regularization 99.00% 82.17% 21.99
3 +Small Weight Pruning 98.99% 89.13% 11.71
4 +ReLU Pruning (control) 98.94% 91.58% 6.43

Table 1: Improvement in provable adversarial accuracy and veri�cation solve times when incremen-
tally adding natural regularization methods for improving weight sparsity and ReLU stability into
the model training procedure, before veri�cation occurs. Each row represents the addition of another
method – for example, Row 3 uses adversarial training,`1-regularization, and small weight pruning.
Row 4 adds ReLU pruning (see Appendix A). Row 4 is the control model for MNIST and� = 0 :1
that we present again in comparisons in Tables 2 and 3. We use a 3600 instead of 120 second timeout
for Row 1 and only veri�ed the �rst 100 images (out of 10000) because verifying it took too long.

3.3 RELU STABILITY

Next, we target the primary speed bottleneck of exact veri�cation: the number of ReLUs the veri�er
has to branch on. In our paper, this corresponds to the notion of inducing ReLU stability. Before we
describe our methodology, we formally de�ne ReLU stability.

Given an inputx, a set of allowed perturbations Adv(x), and a ReLU, exact veri�ers may need
to branch based on the possible pre-activations of the ReLU, namelyẑij (Adv(x)) = f ẑij (x0) :
x0 2 Adv(x)g (cf. (2)). If there exist two perturbationsx0; x00 in the set Adv(x) such that
sign(ẑij (x0)) 6= sign(ẑij (x00)) , then the veri�er has to consider that for some perturbed inputs the
ReLU is active(zij = ẑij) and for other perturbed inputs inactive(zij = 0) . The more such cases
the veri�er faces, the more branches it has to consider, causing the complexity of veri�cation to in-
crease exponentially. Intuitively, a model with1000ReLUs among which only100ReLUs require
branching will likely be much easier to verify than a model with200ReLUs that all require branch-
ing. Thus, it is advantageous for the veri�er if, on an inputx with allowed perturbation set Adv(x),
the number of ReLUs such that

sign(ẑij (x0)) = sign(ẑij (x)) 8x0 2 Adv(x) (5)

is maximized. We call a ReLU for which (5) holds on an inputx astable ReLUon that input. If (5)
does not hold, then the ReLU is anunstable ReLU.

Directly computing whether a ReLU is stable on a given inputx is dif�cult because doing so would
involve considering all possible values ofẑij (Adv(x)) . Instead, exact veri�ers compute an upper
boundûij and a lower bound̂l ij of ẑij (Adv(x)) . If 0 � l̂ ij or ûij � 0, they can replace the ReLU
with the identity function or the zero function, respectively. Otherwise, ifl̂ ij < 0 < ûij , these
veri�ers then determine that they need to “branch” on that ReLU. Thus, we can rephrase (5) as

sign(ûij) = sign(l̂ ij) (6)

We will discuss methods for determining these upper and lower boundsûij , l̂ ij in Section 3.3.2.

3.3.1 A REGULARIZATION TECHNIQUE FORINDUCING RELU STABILITY : RS LOSS

As we see from equation (6), a function that would indicate exactly when a ReLU is stable is
F � (ûij ; l̂ ij) = sign(ûij) � sign(l̂ ij). Thus, it would be natural to use this function as a regular-
izer. However, this function is non-differentiable and if used in training a model, would provide no
useful gradients during back-propagation. Thus, we use the following smooth approximation ofF �

(see Fig. 1) which provides the desired gradients:

F (ûij ; l̂ ij) = � tanh(1 + ûij � l̂ ij)

We call the corresponding objective RS Loss, and show in Fig. 2a that using this loss function as
a regularizer effectively decreases the number of unstable ReLUs. RS Loss thus encouragesReLU
stability, which, in turn, speeds up exact veri�cation - see Fig. 2b.

5

Published as a conference paper at ICLR 2019

101

0.0030.00020.00012

To
ta

l U
ns

ta
bl

e R
eL

U
s

RS Loss weight

0.00050 0.0003

278

74 62
44

20

Layer 1

Layer 3
Layer 2

Individual
layers:

(a)

6.43

0.49 0.24 0.15 0.10 0.12

0.0030.00050.0003

RS Loss weight

0 0.00012 0.0002

S
ol

ve
 ti

m
e

(s
)

(b)

6.43

9.41

11.80

0.49

1.13

2.78

0 4 8 12

bo
un

d
on

-n

or
m

Solve time (s)

0.1

0.3

0.2

Control Solve Time
+ RS Solve Time

(c)

Figure 2: (a) Average number of unstable ReLUs by layer and (b) average veri�cation solve times
of 6 networks trained with different weights on RS Loss for MNIST and� = 0 :1 . Averages are
taken over all 10000 MNIST test set inputs. Both metrics improve signi�cantly with increasing
RS Loss weight. An RS Loss weight of 0 corresponds to the control network, while an RS Loss
weight of 0.00012 corresponds to the “+RS” network for MNIST and� = 0 :1 in Tables 2 and 3. (c)
Improvement in the average time taken by a veri�er to solve the veri�cation problem after adding
RS Loss to the training procedure, for different� on MNIST. The weight on RS Loss was chosen so
that the “+RS” models have test set accuracies within0:50%of the control models.

Loss in addition to all of the same natural improvements. This lets us isolate the incremental effect
of adding RS Loss to the training procedure.

In addition to attaining a 4–13x speedup in MNIST veri�cation times (see Fig. 2c), we achieve
higher provable adversarial accuracy in every single setting when using RS Loss. This is especially
notable for the hardest veri�cation problem we tackle – proving robustness to perturbations with`1
norm-bound8=255 on CIFAR-10 – where adding RS Loss nearly triples the provable adversarial
accuracy from7:09%to 20:27%. This improvement is primarily due to veri�cation speedup induced
by RS Loss, which allows the veri�er to �nish proving robustness for far more inputs within the 120
second time limit. These results are shown in Table 2.

Table 2: Provable Adversarial Accuracies for the control and “+RS” networks in each setting.

MNIST, � = 0 :1 MNIST, � = 0 :2 MNIST, � = 0 :3 CIFAR, � = 2=255 CIFAR, � = 8=255

Control 91.58 86.45 77.99 45.53 7.09
+RS 94.33 89.79 80.68 45.93 20.27

4 EXPERIMENTS

4.1 EXPERIMENTS ONMNIST AND CIFAR

In addition to the experimental results already presented, we compare our control and “+RS” net-
works with the best available results presented in the state-of-the-art certi�able defenses of Wong
et al. (2018), Dvijotham et al. (2018), and Mirman et al. (2018) in Table 3. We compare their test
set accuracy, PGD adversarial accuracy (an evaluation of robustness against a strong 40-step PGD
adversarial attack), and provable adversarial accuracy. Additionally, to show that our method can
scale to larger architectures, we train and verify a “+RS (Large)” network for each dataset and� .

In terms of provable adversarial accuracies, on MNIST, our results are signi�cantly better than those
of Wong et al. (2018) for larger perturbations of� = 0 :3, and comparable for� = 0 :1. On CIFAR-
10, our method is slightly less effective, perhaps indicating that more unstable ReLUs are necessary
to properly learn a robust CIFAR classi�er. We also experienced many more instances of the veri�er
reaching its allotted 120 second time limit on CIFAR, especially for the less ReLU stable control
networks. Full experimental details for each model in Tables 1, 2, and 3, including a breakdown of
veri�cation solve results (how many images did the veri�erA. prove robustB. �nd an adversarial
example forC. time out on), are available in Appendix E.

7

Published as a conference paper at ICLR 2019

Table 3: Comparison of test set, PGD adversarial, and provable adversarial accuracy of networks
trained with and without RS Loss. We also provide the best available certi�able adversarial and
PGD adversarial accuracy of any single models from Wong et al. (2018), Dvijotham et al. (2018),
and Mirman et al. (2018) for comparison, and highlight the best provable accuracy for each� .
* The provable adversarial accuracy for “+RS (Large)” is only computed for the �rst 1000 images
because the veri�er performs more slowly on larger models.
** Dvijotham et al. (2018); Mirman et al. (2018) use a slightly smaller� = 0 :03 = 7:65=255.
y Mirman et al. (2018) computes results over 500 images instead of all 10000.
yyMirman et al. (2018) uses a slightly smaller� = 0 :007 = 1:785=255.

Dataset Epsilon Training Test Set PGD Adversarial Provable/Certi�able
Method Accuracy Accuracy Adversarial Accuracy

MNIST � = 0 :1

Control 98.94% 95.12% 91.58%
+RS 98.68% 95.13% 94.33%
+RS (Large)* 98.95% 96.58% 95.60%

Wong et al. 98.92% - 96.33%
Dvijotham et al. 98.80% 97.13% 95.56%
Mirman et al.y 99.00% 97.60% 96.60%

MNIST � = 0 :2
Control 98.40% 93.14% 86.45%
+RS 98.10% 93.14% 89.79%
+RS (Large)* 98.21% 94.19% 89.10%

MNIST � = 0 :3

Control 97.75% 91.64% 77.99%
+RS 97.33% 92.05% 80.68%
+RS (Large)* 97.54% 93.25% 59.60%

Wong et al. 85.13% - 56.90%
Mirman et al.y 96.60% 93.80% 82.00%

CIFAR � = 2=255

Control 64.64% 51.58% 45.53%
+RS 61.12% 49.92% 45.93%
+RS (Large)* 61.41% 50.61% 41.40%

Wong et al. 68.28% - 53.89%
Mirman et al.y,yy 62.00% 54.60% 52.20%

CIFAR � = 8=255

Control 50.69% 31.28% 7.09%
+RS 40.45% 26.78% 20.27%
+RS (Large)* 42.81% 28.69% 19.80%

Wong et al. 28.67% - 21.78%
Dvijotham et al.** 48.64% 32.72% 26.67%
Mirman et al.y, ** 54.20% 40.00% 35.20%

4.2 EXPERIMENTAL METHODS AND DETAILS

In our experiments, we use robust adversarial training (Goodfellow et al., 2015) against a strong
adversary as done in Madry et al. (2018) to train various DNN classi�ers. For each setting of dataset
(MNIST or CIFAR) and� , we �nd a suitable weight on RS Loss via line search (See Table 6 in
Appendix D). The same weight is used for each ReLU. During training, we used improved IA for
ReLU bound estimation for “+RS” models and use naive IA for “+RS (Large)” models because of
memory constraints. For ease of comparison, we trained our networks using the same convolutional
DNN architecture as in Wong et al. (2018). This architecture uses two 2x2 strided convolutions with
16 and 32 �lters, followed by a 100 hidden unit fully connected layer. For the larger architecture,
we also use the same “large” architecture as in Wong et al. (2018). It has 4 convolutional layers with
32, 32, 64, and 64 �lters, followed by 2 fully connected layers with 512 hidden units each.

For veri�cation, we used the most up-to-date version of the exact veri�er from Tjeng et al. (2017).
Model solves were parallelized over 8 CPU cores. When verifying an image, the veri�er of Tjeng
et al. (2017) �rst builds a model, and second, solves the veri�cation problem (See Appendix D.2 for
details). We focus on reporting solve times because that is directly related to the task of veri�cation
itself. All build times for the control and “+RS” models on MNIST that we presented were between
4 and 10 seconds, and full results on build times are also presented in Appendix E.

Additional details on our experimental setup (e.g. hyperparameters) can be found in Appendix D.

8

Published as a conference paper at ICLR 2019

5 CONCLUSION

In this paper, we use the principle of co-design to develop training methods that emphasize veri-
�cation as a goal, and we show that they make verifying the trained model much faster. We �rst
demonstrate that natural regularization methods already make the exact veri�cation problem sig-
ni�cantly more tractable. Subsequently, we introduce the notion of ReLU stability for networks,
present a method that improves a network's ReLU stability, and show that this improvement makes
veri�cation an additional 4–13x faster. Our method is universal, as it can be added to any training
procedure and should speed up any exact veri�cation procedure, especially MILP-based methods.

Prior to our work, exact veri�cation seemed intractable for all but the smallest models. Thus, our
work shows progress toward reliable models that can be proven to be robust, and our techniques can
help scale veri�cation to even larger networks.

Many of our methods appear to compress our networks into more compact, simpler forms. We
hypothesize that the reason that regularization methods like RS Loss can still achieve very high
accuracy is that most models are overparametrized in the �rst place. There exist clear parallels
between our methods and techniques in model compression (Han et al., 2016; Cheng et al., 2017b) –
therefore, we believe that drawing upon additional techniques from model compression can further
improve the ease-of-veri�cation of networks. We also expect that there exist objectives other than
weight sparsity and ReLU stability that are important for veri�cation speed. If so, further exploring
the principle of co-design for those objectives is an interesting future direction.

ACKNOWLEDGEMENTS

This work was supported by the NSF Graduate Research Fellowship under Grant No. 1122374,
by the NSF grants CCF-1553428 and CNS-1815221, and by Lockheed Martin Corporation under
award number RPP2016-002. We would like to thank Krishnamurthy Dvijotham, Ludwig Schmidt,
Michael Sun, Dimitris Tsipras, and Jonathan Uesato for helpful discussions.

9

Published as a conference paper at ICLR 2019

REFERENCES

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. InInternational Conference on
Machine Learning (ICML), 2018a.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. InInternational Conference on Machine Learning (ICML), 2018b.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. InProceedings of the 10th ACM Workshop on Arti�cial Intelligence and
Security, AISec '17, pages 3–14, New York, NY, USA, 2017a. ACM. ISBN 978-1-4503-5202-
4. doi: 10.1145/3128572.3140444. URLhttp://doi.acm.org/10.1145/3128572.
3140444 .

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In
IEEE Symposium on Security and Privacy, 2017b.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L. Dill. Ground-truth adversarial examples.
CoRR, abs/1709.10207, 2017. URLhttp://arxiv.org/abs/1709.10207 .

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of arti�cial neural
networks.CoRR, abs/1705.01040, 2017a. URLhttp://arxiv.org/abs/1705.01040 .

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks.CoRR, abs/1710.09282, 2017b.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan
O'Donoghue, Jonathan Uesato, and Pushmeet Kohli. Training veri�ed learners with learned ver-
i�ers. arXiv preprint arXiv:1805.10265, 2018.

Rüdiger Ehlers. Formal veri�cation of piece-wise linear feed-forward neural networks. In Deepak
D'Souza and K. Narayan Kumar, editors,Automated Technology for Veri�cation and Analysis,
pages 269–286, Cham, 2017. Springer International Publishing. ISBN 978-3-319-68167-2.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir
Rahmati, and Dawn Song. Robust physical-world attacks on machine learning models.CoRR,
abs/1707.08945, 2017. URLhttp://arxiv.org/abs/1707.08945 .

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. InInternational Conference on Learning Representations, 2015. URLhttp://
arxiv.org/abs/1412.6572 .

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation for
training veri�ably robust models.arXiv preprint arXiv:1810.12715, 2018.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. InInternational Conference on Learning
Representations (ICLR), 2016.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups.IEEE Signal Processing Maga-
zine, 29(6):82–97, Nov 2012. ISSN 1053-5888. doi: 10.1109/MSP.2012.2205597.

Harini Kannan, Alexey Kurakin, and Ian J. Goodfellow. Adversarial logit pairing.CoRR,
abs/1803.06373, 2018. URLhttp://arxiv.org/abs/1803.06373 .

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
ef�cient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kun�cak,
editors,Computer Aided Veri�cation, pages 97–117, Cham, 2017. Springer International Publish-
ing. ISBN 978-3-319-63387-9.

10

Published as a conference paper at ICLR 2019

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. InInternational
Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi�cation with deep convo-
lutional neural networks. InProceedings of the 25th International Conference on Neural Informa-
tion Processing Systems - Volume 1, NIPS'12, pages 1097–1105, USA, 2012. Curran Associates
Inc. URL http://dl.acm.org/citation.cfm?id=2999134.2999257 .

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks. CoRR, abs/1706.07351, 2017. URLhttp://arxiv.org/abs/1706.
07351 .

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. InInternational Conference on
Learning Representations (ICLR), 2018.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for prov-
ably robust neural networks. In Jennifer Dy and Andreas Krause, editors,Proceedings of the 35th
International Conference on Machine Learning, volume 80 ofProceedings of Machine Learning
Research, pages 3575–3583, StockholmsmÃd'ssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
URL http://proceedings.mlr.press/v80/mirman18b.html .

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against deep neural networks.2016 IEEE Symposium on
Security and Privacy (SP), pages 582–597, 2016.

A. Raghunathan, J. Steinhardt, and P. Liang. Certi�ed defenses against adversarial examples. In
International Conference on Learning Representations (ICLR), 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search.nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge.Nature, 550(7676):354, 2017.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certi�able distributional robustness with
principled adversarial training. InInternational Conference on Learning Representations (ICLR),
2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks.CoRR, abs/1312.6199, 2014. URL
http://arxiv.org/abs/1312.6199 .

Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face veri�cation. InProceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR '14, pages 1701–1708, Washington, DC, USA,
2014. IEEE Computer Society. ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.220. URL
https://doi.org/10.1109/CVPR.2014.220 .

Robert Tibshirani. Regression shrinkage and selection via the lasso.Journal of the Royal Statistical
Society, Series B, 58:267–288, 1994.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Verifying neural networks with mixed integer program-
ming. CoRR, abs/1711.07356, 2017. URLhttp://arxiv.org/abs/1711.07356 .

Jonathan Uesato, Brendan O'Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial
risk and the dangers of evaluating against weak attacks. InInternational Conference on Machine
Learning (ICML), 2018.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. InInternational Conference on Machine Learning (ICML), 2018.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
defenses.NIPS, 2018.

11

Published as a conference paper at ICLR 2019

B ADVERSARIAL TRAINING AND WEIGHT SPARSITY

It is worth noticing that adversarial training against`1 norm-bound adversaries alone already makes
networks easier to verify by implicitly improving weight sparsity. Indeed, this can be shown clearly
in the case of linear networks. Recall that a linear network can be expressed asf (x) = W x + b.
Thus, aǹ 1 norm-bound perturbation of the inputx will produce the output

f (x0) = x0W + b

= xW + b+ (x0 � x)W
� f (x) + � jjW jj1

where the last inequality is just Hölder's inequality. In order to limit the adversary's ability to
perturb the output, adversarial training needs to minimize thejjW jj1 term, which is equivalent tò1-
regularization and is known to promote weight sparsity (Tibshirani, 1994). Relatedly, Goodfellow
et al. (2015) already pointed out that adversarial attacks against linear networks will be stronger
when thè 1-norm of the weight matrices is higher.

Even in the case of nonlinear networks, adversarial training has experimentally been shown to im-
prove weight sparsity. For example, models trained according to Madry et al. (2018) and Wong and
Kolter (2018) often learn many weight-sparse layers, and we observed similar trends in the mod-
els we trained. However, it is important to note that while adversarial training alone does improve
weight sparsity, it is not suf�cient by itself for ef�cient exact veri�cation. Additional regularization
like `1-regularization and small weight pruning further promotes weight sparsity and gives rise to
networks that are much easier to verify.

13

Published as a conference paper at ICLR 2019

C INTERVAL ARITHMETIC

C.1 NAIVE INTERVAL ARITHMETIC

Naive IA determines upper and lower bounds for a layer based solely on the upper and lower bounds
of the previous layer.

De�ne W + = max(W; 0), W � = min(W; 0), u = max(û; 0), andl = max(l̂; 0). Then the bounds
on the pre-activations of layeri can be computed as follows:

ûi = ui � 1W +
i + l i � 1W �

i + bi (7)

l̂ i = l i � 1W +
i + ui � 1W �

i + bi (8)

As noted in Tjeng et al. (2017) and also Dvijotham et al. (2018), this method is ef�cient but can lead
to relatively conservative bounds for deeper networks.

C.2 IMPROVED INTERVAL ARITHMETIC

We improve upon naive IA by exploiting ReLUs that we can determine to always be active. This
allows us to cancel symbols that are equivalent that come from earlier layers of a network.

We will use a basic example of a neural network with one hidden layer to illustrate this idea. Suppose
that we have the scalar inputz0 with l0 = 0 ; u0 = 1 , and the network has the following weights and
biases:

W1 = [1 � 1] ; b1 = [2 2] ; W2 =
�
1
1

�
; b2 = 0

Naive IA for the �rst layer giveŝl1 = l1 = [2 1]; û1 = u1 = [3 2], and applying naive IA to
the output̂z2 givesl̂2 = 3 ; û2 = 5 . However, becausêl1 > 0, we know that the two ReLUs in the
hidden layer are always active and thus equivalent to the identity function. Then, the output is

ẑ2 = z11 + z12 = ẑ11 + ẑ12 = (z0 + 2) + (� z0 + 2) = 4

Thus, we can obtain the tighter boundsl̂2 = û2 = 4 , as we are able to cancel out thez0 terms.

We can write this improved version of IA as follows. First, lettingWk denote rowk of matrix W ,
we can de�ne the “active” part ofW as the matrixWA , where

(WA)k =

(
Wk if l̂ i � 1 > 0
0 if l̂ i � 1 � 0

De�ne the “non-active” part ofW as

WN = W � WA

Then, using the same de�nitions for the notationW + ; W � ; u; l as before, we can write down the
following improved version of IA which uses information from the previous 2 layers.

ûi = ui � 1Wi
+
N + l i � 1Wi

�
N + bi

+ ui � 2(Wi � 1Wi A)+ + l i � 2(Wi � 1Wi A) � + bi � 1Wi A

l̂ i = l i � 1Wi
+
N + ui � 1Wi

�
N + bi

+ l i � 2(Wi � 1Wi A)+ + ui � 2(Wi � 1Wi A) � + bi � 1Wi A

We are forced to to usel i � 1;j andui � 1;j if we can not determine whether or not the ReLU corre-
sponding to the activationzi � 1;j is active, but we usel i � 2 andui � 2 whenever possible.

We now de�ne some additional notation to help us extend this method to any number of layers. We
now seek to de�nef n , which is a function which takes in four sequences of lengthn – upper bounds,
lower bounds, weights, and biases – and outputs the current layer's upper and lower bounds.

What we have derived so far from (7) and (8) is the following

f 1(ui � 1; l i � 1; Wi ; bi) = (ui � 1W +
i + l i � 1W �

i + bi ; l i � 1W +
i + ui � 1W �

i + bi)

14

Published as a conference paper at ICLR 2019

Let u denote a sequence of upper bounds. Letuz denote elementz of the sequence, and letu [z:]
denote the sequence without the �rstz elements. De�ne notation forl , W , andb similarly.

Then, using the fact thatWN Z = (W Z)N andWA Z = (W Z)A , we can show that the following
recurrence holds:

f n +1 (u; l ; W ; b) = f 1(u1; l1; W 1N ; b1)
+ f n (u [1:] ; l [1:] ; (W 2W 1A ; W [2:]); (b2W 1A ; b [2:])) (9)

Let u (x ;y) denote the sequence(ux ; ux � 1; � � � ; uy), and de�nel (x ;y) , W (x ;y) , andb (x ;y) similarly.
Then, if we want to compute the bounds on layerk using all information from the previousk layers,
we simply have to computef k (u (k � 1;0) ; l (k � 1;0) ; W (k ;1) ; b (k ;1)).

From the recurrence 9, we see that using information from all previous layers to compute bounds for
layerk takesO(k) matrix-matrix multiplications. Thus, using information from all previous layers
to compute bounds for all layers of ad layer neural network only involvesO(d2) additional matrix
multiplications, which is still reasonable for most DNNs. This method is still relatively ef�cient
because it only involves matrix multiplications – however, needing to perform matrix-matrix multi-
plications as opposed to just matrix-vector multiplications results in a slowdown and higher memory
usage when compared to naive IA. We believe the improvement in the estimate of ReLU upper and
lower bounds is worth the time trade-off for most networks.

C.3 EXPERIMENTAL RESULTS ONIMPROVED IA AND NAIVE IA

In Table 4, we show empirical evidence that the number of unstable ReLUs in each layer of a MNIST
network, as estimated by improved IA, tracks the number of unstable ReLUs determined by the exact
veri�er quite well. We also present estimates determined via naive IA for comparison.

Dataset Epsilon Training Estimation Unstable ReLUs Unstable ReLUs Unstable ReLUs
Method Method in 1st Layer in 2nd Layer in 3rd Layer

MNIST � = 0 :1

Control
Exact 61.14 185.30 31.73
Improved IA 61.14 185.96 (+0.4%) 43.40 (+36.8%)
Naive IA 61.14 188.44 (+1.7%) 69.96 (+120.5%)

+RS
Exact 21.64 64.73 14.67
Improved IA 21.64 64.80 (+0.1%) 18.97 (+29.4%)
Naive IA 21.64 65.34 (+0.9%) 33.51 (+128.5%)

MNIST � = 0 :2

Control
Exact 17.47 142.95 37.92
Improved IA 17.47 142.95 48.88 (+28.9%)
Naive IA 17.47 142.95 69.75 (+84.0%)

+RS
Exact 29.91 54.47 24.05
Improved IA 29.91 54.47 28.40 (+18.1%)
Naive IA 29.91 54.47 40.47 (+68.3%)

MNIST � = 0 :3

Control
Exact 36.76 83.42 40.74
Improved IA 36.76 83.44 (+0.02%) 46.00 (+12.9%)
Naive IA 36.76 83.52 (+0.1%) 48.27 (+18.5%)

+RS
Exact 24.43 48.47 28.64
Improved IA 24.43 48.47 31.19 (+8.9%)
Naive IA 24.43 48.47 32.13 (+12.2%)

Table 4: Comparison between the average number of unstable ReLUs as found by the exact veri�er
of Tjeng et al. (2017) and the estimated average number of unstable ReLUs found by improved IA
and naive IA. We compare these estimation methods on the control and “+RS” networks for MNIST
that we described in Section 3.3.4

15

Published as a conference paper at ICLR 2019

C.4 ON THE CONSERVATIVE NATURE OF IA B OUNDS

The upper and lower bounds we compute on each ReLU via either naive IA or improved IA are
conservative. Thus, every unstable ReLU will always be correctly labeled as unstable, while stable
ReLUs can be labeled as either stable or unstable. Importantly, every unstable ReLU, as estimated
by IA bounds, is correctly labeled and penalized by RS Loss. The trade-off is that stable ReLUs
mislabeled as unstable will also be penalized, which can be an unnecessary regularization of the
model.

In Table 5 we show empirically that we can achieve the following two objectives at once when using
RS Loss combined with IA bounds.

1. Reduce the number of ReLUslabeledas unstable by IA, which is an upper bound on the
true number of unstable ReLUs as determined by the exact veri�er.

2. Achieve similar test set accuracy and PGD adversarial accuracy as a model trained without
RS Loss.

Dataset Epsilon Training Estimation Total Labeled Test Set PGD Adversarial
Method Method Unstable ReLUs Accuracy Accuracy

MNIST � = 0 :1

Control Improved IA 290.5 98.94% 95.12%
+RS Improved IA 105.4 98.68% (-0.26%) 95.13% (+0.01%)

Control (Large) Naive IA 835.8 99.04% 96.32%
+RS (Large) Naive IA 150.3 98.95% (-0.09%) 96.58% (+0.26%)

Table 5: The addition of RS Loss results in far fewer ReLUs labeled as unstable for both 3-layer and
6-layer (Large) networks. The decrease in test set accuracy as a result of this regularization is small.

Even though IA bounds are conservative, these results show that it is still possible to decrease the
number of ReLUs labeled as unstable by IA without signi�cantly degrading test set accuracy. When
comparing the Control and “+RS” networks for MNIST and� = 0 :1, adding RS Loss decreased
the average number of ReLUs labeled as unstable (using bounds from Improved IA) from290:5 to
105:4 with just a0:26%loss in test set accuracy. The same trend held for deeper, 6-layer networks,
even when the estimation method for upper and lower bounds was the more conservative Naive IA.

16

Published as a conference paper at ICLR 2019

D FULL EXPERIMENTAL SETUP

D.1 NETWORK TRAINING DETAILS

In our experiments, we use robust adversarial training (Goodfellow et al., 2015) against a strong
adversary as done in Madry et al. (2018) to train various DNN classi�ers. Following the prior
examples of Wong and Kolter (2018) and Dvijotham et al. (2018), we introduced a small tweak
where we increased the adversary strength linearly from0:01 to � over �rst half of training and kept
it at � for the second half. We used this training schedule to improve convergence of the training
process.

For MNIST, we trained for70 epochs using the Adam optimizer (Kingma and Ba, 2015) with a
learning rate of1e� 4 and a batch size of32. For CIFAR, we trained for250epochs using the Adam
optimizer with a learning rate of1e� 4. When using naive IA, we used a batch size of128, and
when using improved IA, we used a batch size of16. We used a smaller batch size in the latter
case because improved IA incurs high RAM usage during training. To speed up training on CIFAR,
we only added in RS Loss regularization in the last20% of the training process. Using this same
sped-up training method on MNIST did not signi�cantly affect the results.

Dataset Epsilon `1 weight RS Loss weight

MNIST 0.1 2e� 5 12e� 5
MNIST 0.2 2e� 5 1e� 4
MNIST 0.3 2e� 5 12e� 5
CIFAR 2/255 1e� 5 1e� 3
CIFAR 8/255 1e� 5 2e� 3

Table 6: Weights chosen using line search for`1 regularization and RS Loss in each setting

For each setting, we �nd a suitable weight on RS Loss via line search. The same weight is used for
each ReLU. The �ve weights we chose are displayed above in Table 6, along with weights chosen
for `1-regularization.

We also train “+RS” models using naive IA to show that our technique for inducing ReLU stability
can work while having small training time overhead – full details on “+RS (Naive IA)” networks are
in Appendix E.

D.2 VERIFIER OVERVIEW

The MILP-based exact veri�er of Tjeng et al. (2017), which we use, proceeds in two steps for every
input. They are the model-build step and the solve step.

First, the veri�er builds a MILP model based on the neural network and the input. In particular, the
veri�er will compute upper and lower bounds on each ReLU using a speci�c bound computation al-
gorithm. We chose the default bound computation algorithm in the code, which uses LP to compute
bounds. LP bounds are tighter than the bounds computed via IA, which is another option available in
the veri�er. The model-build step's speed appeared to depend primarily on the tightening algorithm
(IA was faster than LP) and the number of variables in the MILP (which, in turn, depends on the
sparsity of the weights of the neural network). The veri�er takes advantage of these bounds by not
introducing a binary variables into the MILP formulation if it can determine that a particular ReLU
is stable. Thus, using LP as the tightening algorithm resulted in higher build times, but led to easier
MILP formulations.

Next, the veri�er solves the MILP using an off-the-shelf MILP solver. The solver we chose was
the commercial Gurobi Solver, which uses a branch-and-bound method for solving MILPs. The
solver's speed appeared to depend primarily on the number of binary variables in the MILP (which
corresponds to the number of unstable ReLUs) as well as the total number of variables in the MILP
(which is related to the sparsity of the weight matrices). While these two numbers are strongly
correlated with solve times, some solves would still take a long time despite having few binary

17

Published as a conference paper at ICLR 2019

variables. Thus, understanding what other properties of neural networks correspond to MILPs that
are easy or hard to solve is an important area to explore further.

D.3 VERIFIER DETAILS

We used the most up-to-date version of the exact veri�er from Tjeng et al. (2017) using the default
settings of the code. We allotted 120 seconds for veri�cation of each input datapoint using the
default model build settings. We ran our experiments using the commercial Gurobi Solver (version
7.5.2), and model solves were parallelized over 8 CPU cores with Intel Xeon CPUs @ 2.20GHz
processors. We used computers with 8–32GB of RAM, depending on the size of the model being
veri�ed. All computers used are part of an OpenStack network.

18

Published as a conference paper at ICLR 2019

E FULL EXPERIMENTAL VERIFICATION RESULTS

Dataset Epsilon Training Test PGD Veri�er Provable Total Avg Avg
Method Set Adversarial Upper Adversarial Unstable Solve Build

Accuracy Accuracy Bound Accuracy ReLUs Time (s) Time (s)

MNIST � = 0 :1

Adversarial Training* 99.17% 95.04% 96.00% 19.00% 1517.9 2970.43 650.93
+`1-regularization 99.00% 95.25% 95.98% 82.17% 505.3 21.99 79.13
+Small Weight Pruning 98.99% 95.38% 94.93% 89.13% 502.7 11.71 19.30
+ReLU Pruning (Control) 98.94% 95.12% 94.45% 91.58% 278.2 6.43 9.61
+RS 98.68% 95.13% 94.38% 94.33% 101.0 0.49 4.98
+RS (Naive IA) 98.53% 94.86% 94.54% 94.32% 158.3 0.96 4.82
+RS (Large)** 98.95% 96.58% 95.60% 95.60% 119.5 0.27 156.74

MNIST � = 0 :2

Control 98.40% 93.14% 90.71% 86.45% 198.3 9.41 7.15
+RS 98.10% 93.14% 89.98% 89.79% 108.4 1.13 4.43
+RS (Naive IA) 98.08% 91.68% 88.87% 85.54% 217.2 8.50 4.67
+RS (Large)** 98.21% 94.19% 90.40% 89.10% 133.0 2.93 171.10

Wong et al. (2018)*** 95.06% 89.03% - 80.29% - - -

MNIST � = 0 :3

Control 97.75% 91.64% 83.83% 77.99% 160.9 11.80 5.14
+RS 97.33% 92.05% 81.70% 80.68% 101.5 2.78 4.34
+RS (Naive IA) 97.06% 89.19% 79.12% 76.70% 179.0 6.43 4.00
+RS (Large)** 97.54% 93.25% 83.70% 59.60% 251.2 37.45 166.39

CIFAR � = 2=255

Control 64.64% 51.58% 50.23% 45.53% 360.0 21.75 66.42
+RS 61.12% 49.92% 47.79% 45.93% 234.3 13.50 52.58
+RS (Naive IA) 57.83% 47.03% 45.33% 44.44% 170.1 6.30 47.11
+RS (Large)** 61.41% 50.61% 51.00% 41.40% 196.7 29.88 335.97

CIFAR � = 8=255

Control 50.69% 31.28% 33.46% 7.09% 665.9 82.91 73.28
+RS 40.45% 26.78% 22.74% 20.27% 54.2 22.33 38.84
+RS (Naive IA) 46.19% 29.66% 26.07% 18.90% 277.8 33.63 23.66
+RS (Large)** 42.81% 28.69% 25.20% 19.80% 246.5 20.14 401.72

Table 7: Full results on natural improvements from Table 1, control networks (which use all of the
natural improvements and ReLU pruning), and “+RS” networks from Tables 2 and 3. While we are
unable to determine the true adversarial accuracy, we provide two upper bounds and a lower bound.
Evaluations of robustness against a strong 40-step PGD adversary (PGD adversarial accuracy) gives
one upper bound, and the veri�er itself gives another upper bound because it can also prove that
the network isnot robustto perturbations on certain inputs by �nding adversarial examples. The
veri�er simultaneously �nds the provable adversarial accuracy, which is a lower bound on the true
adversarial accuracy. The gap between the veri�er upper bound and the provable adversarial accu-
racy (veri�er lower bound) corresponds to inputs that the veri�er times out on. These are inputs that
the veri�er can not prove to be robustor not robust in 120 seconds. Build times and solve times
are reported in seconds. Finally, average solve time includes timeouts. In other words, veri�cation
solves that time out contribute 120 seconds to the total solve time.
* The “Adversarial Training” network uses a 3600 instead of 120 second timeout and is only veri�ed
for the �rst 100 images because verifying it took too long.
** The “+RS (Large)” networks are only veri�ed for the �rst 1000 images because of long build
times.
*** Wong et al. (2018); Dvijotham et al. (2018), and Mirman et al. (2018), which we compare to in
Table 3, do not report results on MNIST,� = 0 :2 in their papers. We ran the publicly available code
of Wong et al. (2018) on MNIST,� = 0 :2 to generate these results for comparison.

19

Published as a conference paper at ICLR 2019

F DISCUSSION ONVERIFICATION AND CERTIFICATION

Exact veri�cation and certi�cation are two related approaches to formally verifying properties of
neural networks, such as adversarial robustness. In both cases, the end goal is formal veri�ca-
tion. Certi�cation methods, which solve an easier-to-solve relaxation of the exact veri�cation prob-
lem, are important developments because exact veri�cation previously appeared computationally
intractable for all but the smallest models.

For the case of adversarial robustness, certi�cation methods exploit a trade-off between provable
robustness and speed. They can fail to provide certi�cates of robustness for some inputs that are
actually robust, but they will either �nd or fail to �nd certi�cates of robustness quickly. On the other
hand, exact veri�ers will always give the correct answer if given enough time, but exact veri�ers can
sometimes take many hours to formally verify robustness on even a single input.

In general, the process of training a robust neural network and then formally verifying its robustness
happens in two steps.

� Step 1: Training

� Step 2: Veri�cation or Certi�cation

Most papers on certi�cation, including Wong and Kolter (2018); Wong et al. (2018); Dvijotham
et al. (2018); Raghunathan et al. (2018) and Mirman et al. (2018), propose a method for step 2
(the certi�cation step), and then propose a training objective in step 1 that is directly related to
their method for step 2. We call this paradigm “co-training.” In Raghunathan et al. (2018), they
found that using their step 2 on a model trained using Wong and Kolter (2018)'s step 1 resulted in
extremely poor provable robustness (less than 10%), and the same was true when using Wong and
Kolter (2018)'s step 2 on a model trained using their step 1.

We focus on MILP-based exact veri�cation as our step 2, which encompasses the best current exact
veri�cation methods. The advantage of using exact veri�cation for step 2 is that it will be accurate,
regardless of what method is used in step 1. The disadvantage of using exact veri�cation for step
2 is that it could be extremely slow. For our step 1, we used standard robust adversarial training.
In order to signi�cantly speed up exact veri�cation as step 2, we proposed techniques that could be
added to step 1 to induce weight sparsity and ReLU stability.

In general, we believe it is important to develop effective methods for step 1, given that step 2 is
exact veri�cation. However, ReLU stability can also be bene�cial for tightening the relaxation of
certi�cation approaches like that of Wong et al. (2018) and Dvijotham et al. (2018), as unstable
ReLUs are the primary cause of the overapproximation that occurs in the relaxation step. Thus, our
techniques for inducing ReLU stability can be useful for certi�cation as well.

Finally, in recent literature on veri�cation and certi�cation, most works have focused on formally
verifying the property of adversarial robustness of neural networks. However, veri�cation of other
properties could be useful, and our techniques to induce weight sparsity and ReLU stability would
still be useful for veri�cation of other properties for the exact same reasons that they are useful in
the case of adversarial robustness.

20

	Introduction
	Background and Related Work
	Training Verifiable Network Models
	Verifying Adversarial Robustness of Network Models
	Weight Sparsity and its Impact on Verification Speed
	ReLU Stability
	A Regularization Technique for Inducing ReLU Stability: RS Loss
	Estimating ReLU Upper and Lower Bounds on Activations
	Impact of ReLU Stability Improvements on Verification Speed
	Impact of ReLU Stability Improvements on Provable Adversarial Accuracy

	Experiments
	Experiments on MNIST and CIFAR
	Experimental Methods and Details

	Conclusion
	Natural Improvements
	Natural Regularization for Inducing Weight Sparsity
	A Basic Improvement for Inducing ReLU Stability: ReLU Pruning

	Adversarial Training and Weight Sparsity
	Interval Arithmetic
	Naive Interval Arithmetic
	Improved Interval Arithmetic
	Experimental Results on Improved IA and Naive IA
	On the Conservative Nature of IA Bounds

	Full Experimental Setup
	Network Training Details
	Verifier Overview
	Verifier Details

	Full Experimental Verification Results

